Friday, November 20, 2015

Non-Phosphorylating And Phosphorylating Oxidoreductase Glyceraldehyde-3-Phosphate Dehydrogenase As Part Of A Structure-Based Design In Glycolysis As The Glycolytic Protein G3PD.

Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) GAPDH1/G3PD, is located in band 12p13.31; related to both glycolysis2 and gluconeogenesis-pathways. G3PD catalyzes reversible oxidative phosphorylation of inorganic phosphate and nicotinamide3 adenine dinucleotide (NAD)4 converting in glycolysis the glycolytic protein GAPDH5 in which adenosine-triphosphate (ATP)6 is generated when phosphoglycerate kinase (PGK)7 is produced in the GAPDH8-catalyzed reaction. These intermediate metabolites (aldolase9, triose-phosphate10-isomerase (TPI)11) catalyze the Glycolysis reactions, in the sequence of the ten enzyme-catalyzed Embden12-Meyerhof13 reactions in the metabolic pathway. Converting phosphoglycerate mutase 1 (PGM)14 catalyzing the internal steps by 2,3-BPG15 phosphatase to form by converting D-glyceraldehyde 3-phosphate (G3P)16 into 1,3-bisphosphoglycerate (1,3-BPG)17 from its role as 3-Phosphoglyceric acid (3PG) in glycolysis as the glycolytic protein GAPDH18 that catalyzes the first step (G3P19 into 1,3-BPG) of the pathway. Plant20 cells contain several reactions of photosynthesis21 participating in glycolysis and the Calvin-Benson22 cycle signaling pathways in plants (cytosolic-GAPC23 (Arabidopsis thaliana)24 functions in plant25 cells.) its final byproduct is also another Glyceraldehyde-3-P. GAPDH is a band 326 protein that associates with the cytoplasmic27 face of human erythrocyte28 (RBC)29 membranes. The cytoplasmic GAPDH exists primarily as a tetrameric30 isoform, 4 identical 37 kDa31 subunits. By subcellular translocation GAPDH32 participates in nuclear events [In nuclear membrane the vesicular*33 tubular cluster fractions34 (VTCs)35 - anterograde transport or retrograde36 membrane transport complexes37 between the intermediates, these are the Golgi38 complex and the endoplasmic reticulum (ER)39, in the nucleus a function is lost in disease* that exploits this process.], this a change to a non-cytosolic40 localization due to the signal transduction pathways (considering Lm41GAPG L.42 mexicana43-like functions.) involved in s-nitrosylase44 activity that mediates, governed by the equilibrium between four cysteine residues (nitrosylation45 and denitrosylation reactions)46, inhibition of GAPDH nuclear translocation, as a basis47 for its multifunctional48 activities relating to the extraglycolytic functions of GAPDH. Nuclear GAPDH49 promotes glucose metabolism to sustain50 cellular ATP51 levels, or potentially by inhibiting targets52 of p30053/CBP such as p5354 dependent phosphorylation. Nitric oxide synthase or neuronal NOS ( involved in cellular and human intracellular55 nuclei events56, in addition to the cytoplasm) could generate nitric oxide57 (NO). GAPDH has four cysteine58 residues which are associated with S-nitrosylation59-yielding NOS60-GAPDH which “recruited” its glycolysis subunit61 from the three63 molecular axes translocation roles (S-thiolation64, S-nitrosylation or aggregated65 enzymes (Cys-15266 and nearby 15667 converted into a 'cross-linked68 soluble' states)), and (SNO69-GAPDH) nitrosylated S-nitrosoglutathione70 (GSNO)71 the active site cysteine residue in GAPDH at its Cys 15072 residue that binds to Siah1 (seven in absentia homolog 1) acquisition and the translocation of GAPDH into the nucleus, and denitrosylation using a combination of approaches, including G3P73 . And NADPH may play a role in (VTC) vesicle74 function. The complex would function in the apoptosis cascade75 by its molecules translocation, this may76 depend on lysine 22777 in the human GAPDH78-Siah79 interaction to another intracellular position80 induced by apoptotic81 stimuli, augments p30082/CREB binding protein (CBP)-associated83 acetylation of nuclear proteins. 'Engineering the cofactor (GAPDH-(Lys) K160R84-K227A) availability prevents85 activation of p300/CBP that interferes with GAPDH-Siah1 binding'86-prevents the ternary (GAPDH-Siah1) complex associations translocation; that CGP-346687 can reduce independently with both cofactors88. Dysregulation of protein S-nitrosylation (S-nitrosocysteine89 - 247) by lipopolysaccharide (LPS) is associated with pathological90 conditions which contributes to disease phenotype, where GAPDH protects ribosomal protein RP91-L13a92 from degradation, L13a93 and GAPDH94 forms a functional GAIT95 complex. One of the functions of GAPDH proteins role in glycolysis96 in relation to DNA97 synthesis is nuclear accumulation associated by the NAD98(+)-dependent s-nitrosylation99 and denitrosylation01 reactions both of these isforms are distinct02 parallel to the uracil DNA glycosylase (UDG)03 gene in mitochondria04 and in the nucleus is N-terminally processed is the 37-kDa subunit05 of the (GAPDH)06 glyceraldehyde-3-phosphate dehydrogenase protein. This enzyme is an example of moonlighting protein which is validated and replaced07 by alternative reference genes that link (in their nuclear forms) on the multifunctional08 properties of the enzyme GAPDH09 known as a key enzyme in glycolysis that contributes to a number of diverse cellular functions unrelated00 to glycolysis001 depending upon its subcellular location. GAPDH is a key enzyme in glycolysis the most commonly used expression is as a housekeeping002 gene.


GAPDH-Siah1Cytotoxic stimuli [1a.] or Programmed cell death, via nitric oxide generation, lead to the binding of GAPDH from its usual tetrameric form to a dimeric form, to the protein Siah1 [1.] intracellular G-3-P [2.] substrate [3.] protects GAPDH from S-nitrosylation [4.]. The GAPDH-Siah interaction depends on lysine 227 [5.], in human GAPDH that interacts with a large groove [6.] of the Siah1 dimer, that connects the GAPDH dimer to PGK in the cytoplasm. figure7The S-nitrosylation [7.,8.] abolishes catalytic activity and confers upon GAPDH the ability to bind to Siah [9.]. (GAPDH) is physiologically nitrosylated at its Cys 150 residue. GAPDH (SNO-GAPDH) [10.] binds to Siah1 [11.] by forming a protein complex. In the nucleus [12.] GAPDH is acetylated at Lys 160 [13.] and binds to the protein acetyltransferase p300/CBP. Under these conditions siah-1 formed a complex with GAPDH (PDB:4O63) and localized in the nucleus of Müller cells [14.]. GAPDH mutants [15.] that cannot bind Siah1 prevents translocation [16.] to the nucleus to elicit neurotoxicity [17.] and cell apoptosis.
[1a.] 16492755, 8769851003 [1.]16391220, [2.]19542219, 22534308, 3350006004, 19937139, [3.]22847419, [4.]15951807, [5.]20601085, [6.]16510976, 20392205005, [7.,8.]22817468006, 16505364007, [9.]16633896, [10.]16574384, [11.]20972425, [12.]19607794, [13.]18552833, [14.]19940145, [15.]23027902008, [16.]24362262, [17.]16492755.






H placental GAPDHAnalysis of CGP-3466 Docking (NAD) to Human Placental GAPDH which decreases the synthesis of pro-apoptotic proteins is N-terminally PMID:10677844, processed to which a Rossmann NAD(P) binding fold as seen in figure 1 is a C-terminal domain as seen on this page, PMID:10617673, 26022259, 16510976 ...The structure is also used to build a model of the complex between GAPDH and the E3 ubiquitin ligase Siah1. (Purple Ribbon-1U8F_Q Figure 1.)





(Figure 3.) Glycolysis and GlyconeogenesisIn the GAPDH-catalyzed reaction these intermediate metabolites (aldolase, triose-phosphate-isomerase Glycolysis and Glyconeogenesis (TPI)) catalyze the Glycolysis reactions, in the sequence of the ten enzyme-catalyzed Embden-Meyerhof reactions in the  metabolic pathway. Converting phosphoglycerate mutase 1 (PGM) catalyzing the internal steps by 2,3-BPG phosphatase to form by converting D-glyceraldehyde 3-phosphate g3p(G3P) into 1,3-bisphosphoglycerate (1,3-BPG) from its role as 3-Phosphoglyceric acid (3PG) in glycolysis as the glycolytic protein GAPDH that catalyzes the first step (G3P into 1,3-BPG) of the pathway.



(Figure 4.) GAPDH homotetramerGAPDH homotetramer was studied as represented an assembly of repeating spherical units that harbored a distinct birefringent crystal structure to the optic axis for the p polarization, also (r axis) discernible via transmission electron microscopy. of the relative amount of soluble monomeric GAPDH to G3P in the binding pocket of the NAD(+)-binding site residue located at the active site linked to GAPDH in Figures 5 and 6. PMID:10407144009, 25086035.




g3pAnother model building studie indicates that a structure obtained where glyceraldehyde 3-phosphate PDB:3CMC_Q binds in the P(s) pocket of the natural substrate G3P phosphorylating GAPDH (PDB:1U8F_Q) at the catalytic cysteine residue site. To define the conditions suitable for affinity for the cosubstrate, the isolation and accumulation of the intermediate metabolites per G3P monomer found in Figure 8 of the equivalent Glc-3-P structure in the binding pocket of the NAD(+)-binding site residue located at the active site linked to GAPDH. PMID:19542219, 22534308


APO/STPCorrectly known binding sites on ((GAPD/NAD)) structures, polar spheres of the binding catalytic pocket that corresponds to G3P (glyceraldehyde 3-phosphate) aligned to the holographical structure nonbounded spheres (salmon color), these apoenzymes together with the cofactor(s) Cys 151, 152 which corresponds as below the Ps pocket of G3P, on the Green ribbon required for cofactor activity. Together with eliminated crystallographic waters and other possible spheres, these are at least one atom of a amino acid residue in contact with at least one alpha sphere of one binding pocket on the holo protein NAD structure 1U8F_Q needed to align holo and apo structures included in this data set with G3P (PDB:3CMC_Q) was tested only on holo structure (NAD), obtained via Pea Green spheres aligned to 1U8F_Q ribbons/ligand structure which provide structural recognition insights into the biological 1U8F-Q assembly this includes 29 asymmetric units of its dimeric form, along the tetrameric 1U8F biological forms axis. PMID:9461340010


siah1-pdb:4i7d_g3pd-pdb:1u8f(Figure 8.) These are the results without the liquid chromatography coupled mass spectrometer, that are known 3D products by two-dimensional sequence analyses with the STRAP alignment tools data sets and which may have any effect on the functions of further analysis involved in more ordered results than this study attempts to show, of the analysis that may be included are identified separated into multiple gradients here in these paired graphs. Therefore in the present work to uncover the exact coincidence of 1U8F_R and 4I7D_C, the 3D coordinates of GAPDH (PDB:1U8F_Q) to the protein Siah1 4I7D were not presenting when subjected to STRAP  alignment this apparent discrepancy (Figure 1.) was partially resolved by a (Figure 7) rendering from a more reactive native GAPDH_R homotetramer model.



References:



1: Baker BY, Shi W, Wang B, Palczewski K. High-resolution crystal structures of
the photoreceptor glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with three and
four-bound NAD molecules. Protein Sci. 2014 Nov;23(11):1629-39. doi:
10.1002/pro.2543. Epub 2014 Sep 25. PubMed PMID: 25176140; PubMed Central PMCID:
PMC4241113.
2: Wang D, Moothart DR, Lowy DR, Qian X. The expression of
glyceraldehyde-3-phosphate dehydrogenase associated cell cycle (GACC) genes
correlates with cancer stage and poor survival in patients with solid tumors.
PLoS One. 2013 Apr 19;8(4):e61262. doi: 10.1371/journal.pone.0061262. Print 2013.
PubMed PMID: 23620736; PubMed Central PMCID: PMC3631177.
3: Jenkins JL, Tanner JJ. High-resolution structure of human
D-glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr.
2006 Mar;62(Pt 3):290-301. Epub 2006 Feb 22. PubMed PMID: 16510976.
4: Sirover MA. New nuclear functions of the glycolytic protein,
glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem.
2005 May 1;95(1):45-52. Review. PubMed PMID: 15770658.
5: Sirover MA. New insights into an old protein: the functional diversity of
mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta. 1999
Jul 13;1432(2):159-84. Review. PubMed PMID: 10407139.
6: Mercer RW, Dunham PB. Membrane-bound ATP fuels the Na/K pump. Studies on
membrane-bound glycolytic enzymes on inside-out vesicles from human red cell
membranes. J Gen Physiol. 1981 Nov;78(5):547-68. PubMed PMID: 6273495; PubMed
Central PMCID: PMC2228637.
7: Fokina KV, Dainyak MB, Nagradova NK, Muronetz VI. A study on the complexes
between human erythrocyte enzymes participating in the conversions of
1,3-diphosphoglycerate. Arch Biochem Biophys. 1997 Sep 15;345(2):185-92. PubMed
PMID: 9308888.
8: Ashmarina LI, Muronets VI, Nagradova NK. [Glycolytic enzymes in human
erythrocytes: association of glyceraldehyde-3-phosphate dehydrogenase with
3-phosphoglycerate kinase]. Biokhimiia. 1994 Jun;59(6):873-80. Russian. PubMed
PMID: 8075252.
9: Jang M, Kang HJ, Lee SY, Chung SJ, Kang S, Chi SW, Cho S, Lee SC, Lee CK, Park
BC, Bae KH, Park SG. Glyceraldehyde-3-phosphate, a glycolytic intermediate, plays
a key role in controlling cell fate via inhibition of caspase activity. Mol
Cells. 2009 Dec 31;28(6):559-63. doi: 10.1007/s10059-009-0151-7. Epub 2009 Nov
19. PubMed PMID: 19937139.
10: Liaud MF, Lichtlé C, Apt K, Martin W, Cerff R. Compartment-specific isoforms
of TPI and GAPDH are imported into diatom mitochondria as a fusion protein:
evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway.
Mol Biol Evol. 2000 Feb;17(2):213-23. PubMed PMID: 10677844.
11: Forlemu NY, Njabon EN, Carlson KL, Schmidt ES, Waingeh VF, Thomasson KA. Ionic
strength dependence of F-actin and glycolytic enzyme associations: a Brownian
dynamics simulations approach. Proteins. 2011 Oct;79(10):2813-27. doi:
10.1002/prot.23107. Epub 2011 Aug 22. PubMed PMID: 21905108; PubMed Central
PMCID: PMC3179185.
12: Vaca G, Medina C, Wunsch C, Garcia-Cruz D, Sanchez-Corona J, Gonzalez-Quiroga
G, Cantu JM. A simple screening procedure for glucose phosphate isomerase,
phosphofructokinase, aldolase and glyceraldehyde-3-phosphate dehydrogenase
deficiencies. Ann Genet. 1981;24(4):251-3. PubMed PMID: 6460465.
13: Bruns GA, Gerald PS. Human glyceraldehyde-3-phosphate dehydrogenase in
man-rodent somatic cell hybrids. Science. 1976 Apr 2;192(4234):54-6. PubMed PMID:
176725.
14: Miyamae Y, Han J, Sasaki K, Terakawa M, Isoda H, Shigemori H.
3,4,5-tri-O-caffeoylquinic acid inhibits amyloid β-mediated cellular toxicity on
SH-SY5Y cells through the upregulation of PGAM1 and G3PDH. Cytotechnology. 2011
Mar;63(2):191-200. doi: 10.1007/s10616-011-9341-1. Epub 2011 Mar 19. PubMed PMID:
21424281; PubMed Central PMCID: PMC3080471.
15: Roche E, Knecht E, Grisolía S. 2,3-Bisphosphoglycerate protects mitochondrial
and cytosolic proteins from proteolytic inactivation. Biochem Biophys Res Commun.
1987 Feb 13;142(3):680-7. PubMed PMID: 3548716.
16: Tatton WG, Chalmers-Redman RM, Elstner M, Leesch W, Jagodzinski FB, Stupak DP,
Sugrue MM, Tatton NA. Glyceraldehyde-3-phosphate dehydrogenase in
neurodegeneration and apoptosis signaling. J Neural Transm Suppl.
2000;(60):77-100. Review. PubMed PMID: 11205159.
17: Butterfield DA, Hardas SS, Lange ML. Oxidatively modified
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and Alzheimer's disease: many
pathways to neurodegeneration. J Alzheimers Dis. 2010;20(2):369-93. doi:
10.3233/JAD-2010-1375. Review. PubMed PMID: 20164570; PubMed Central PMCID:
PMC2922983.
18: Sirover MA. New insights into an old protein: the functional diversity of
mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta. 1999
Jul 13;1432(2):159-84. Review. PubMed PMID: 10407139.
19: Frayne J, Taylor A, Cameron G, Hadfield AT. Structure of insoluble rat sperm
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) via heterotetramer formation
with Escherichia coli GAPDH reveals target for contraceptive design. J Biol Chem.
2009 Aug 21;284(34):22703-12. doi: 10.1074/jbc.M109.004648. Epub 2009 Jun 19.
PubMed PMID: 19542219; PubMed Central PMCID: PMC2755679.
20: Rius SP, Casati P, Iglesias AA, Gomez-Casati DF. Characterization of an
Arabidopsis thaliana mutant lacking a cytosolic non-phosphorylating
glyceraldehyde-3-phosphate dehydrogenase. Plant Mol Biol. 2006 Aug;61(6):945-57.
PubMed PMID: 16927206.
21: Harper JT, Keeling PJ. Nucleus-encoded, plastid-targeted
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for
chromalveolate plastids. Mol Biol Evol. 2003 Oct;20(10):1730-5. Epub 2003 Jul 28.
PubMed PMID: 12885964.
22: Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant cytoplasmic
GAPDH: redox post-translational modifications and moonlighting properties. Front
Plant Sci. 2013 Nov 12;4:450. doi: 10.3389/fpls.2013.00450. eCollection 2013.
Review. PubMed PMID: 24282406; PubMed Central PMCID: PMC3824636.
23: Vescovi M, Zaffagnini M, Festa M, Trost P, Lo Schiavo F, Costa A. Nuclear
accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase in
cadmium-stressed Arabidopsis roots. Plant Physiol. 2013 May;162(1):333-46. doi:
10.1104/pp.113.215194. Epub 2013 Apr 8. PubMed PMID: 23569110; PubMed Central
PMCID: PMC3641213.
24: Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier N, Lemaire
SD, Trost P. Mechanisms of nitrosylation and denitrosylation of cytoplasmic
glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. J Biol Chem.
2013 Aug 2;288(31):22777-89. doi: 10.1074/jbc.M113.475467. Epub 2013 Jun 7.
PubMed PMID: 23749990; PubMed Central PMCID: PMC3829362.
25: Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant cytoplasmic
GAPDH: redox post-translational modifications and moonlighting properties. Front
Plant Sci. 2013 Nov 12;4:450. doi: 10.3389/fpls.2013.00450. eCollection 2013.
Review. PubMed PMID: 24282406; PubMed Central PMCID: PMC3824636.
26: Kelley GE, Winzor DJ. Quantitative characterization of the interactions of
aldolase and glyceraldehyde-3-phosphate dehydrogenase with erythrocyte membranes.
Biochim Biophys Acta. 1984 Nov 21;778(1):67-73. PubMed PMID: 6498188.
27: Ercolani L, Brown D, Stuart-Tilley A, Alper SL. Colocalization of GAPDH and
band 3 (AE1) proteins in rat erythrocytes and kidney intercalated cell membranes.
Am J Physiol. 1992 May;262(5 Pt 2):F892-6. PubMed PMID: 1590432.
28: Rinalducci S, Marrocco C, Zolla L. Thiol-based regulation of
glyceraldehyde-3-phosphate dehydrogenase in blood bank-stored red blood cells: a
strategy to counteract oxidative stress. Transfusion. 2015 Mar;55(3):499-506.
doi: 10.1111/trf.12855. Epub 2014 Sep 4. PubMed PMID: 25196942.
29: Omodeo-Salè F, Cortelezzi L, Riva E, Vanzulli E, Taramelli D. Modulation of
glyceraldehyde 3 phosphate dehydrogenase activity and tyr-phosphorylation of Band
3 in human erythrocytes treated with ferriprotoporphyrin IX. Biochem Pharmacol.
2007 Nov 1;74(9):1383-9. Epub 2007 Jul 17. PubMed PMID: 17714694.
30: Liaud MF, Lichtlé C, Apt K, Martin W, Cerff R. Compartment-specific isoforms
of TPI and GAPDH are imported into diatom mitochondria as a fusion protein:
evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway.
Mol Biol Evol. 2000 Feb;17(2):213-23. PubMed PMID: 10677844.
31: Park J, Han D, Kim K, Kang Y, Kim Y. O-GlcNAcylation disrupts
glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its
nuclear translocation. Biochim Biophys Acta. 2009 Feb;1794(2):254-62. doi:
10.1016/j.bbapap.2008.10.003. Epub 2008 Oct 31. PubMed PMID: 19022411.
32: Sirover MA. Subcellular dynamics of multifunctional protein regulation:
mechanisms of GAPDH intracellular translocation. J Cell Biochem. 2012
Jul;113(7):2193-200. doi: 10.1002/jcb.24113. Review. PubMed PMID: 22388977;
PubMed Central PMCID: PMC3350569.
33: Tristan C, Shahani N, Sedlak TW, Sawa A. The diverse functions of GAPDH: views
from different subcellular compartments. Cell Signal. 2011 Feb;23(2):317-23. doi:
10.1016/j.cellsig.2010.08.003. Epub 2010 Aug 19. Review. PubMed PMID: 20727968;
PubMed Central PMCID: PMC3084531.
34: Hannibal L, Collins D, Brassard J, Chakravarti R, Vempati R, Dorlet P,
Santolini J, Dawson JH, Stuehr DJ. Heme binding properties of
glyceraldehyde-3-phosphate dehydrogenase. Biochemistry. 2012 Oct
30;51(43):8514-29. doi: 10.1021/bi300863a. Epub 2012 Oct 15. PubMed PMID:
22957700; PubMed Central PMCID: PMC3549054.
35: Tisdale EJ, Kelly C, Artalejo CR. Glyceraldehyde-3-phosphate dehydrogenase
interacts with Rab2 and plays an essential role in endoplasmic reticulum to Golgi
transport exclusive of its glycolytic activity. J Biol Chem. 2004 Dec
24;279(52):54046-52. Epub 2004 Oct 14. PubMed PMID: 15485821.
36: Comer AM, Gibbons HM, Qi J, Kawai Y, Win J, Lipski J. Detection of mRNA
species in bulbospinal neurons isolated from the rostral ventrolateral medulla
using single-cell RT-PCR. Brain Res Brain Res Protoc. 1999 Dec;4(3):367-77.
PubMed PMID: 10592347.
37: Tisdale EJ. Glyceraldehyde-3-phosphate dehydrogenase is phosphorylated by
protein kinase Ciota /lambda and plays a role in microtubule dynamics in the
early secretory pathway. J Biol Chem. 2002 Feb 1;277(5):3334-41. Epub 2001 Nov
27. PubMed PMID: 11724794.
38: Tisdale EJ. Rab2 interacts directly with atypical protein kinase C (aPKC)
iota/lambda and inhibits aPKCiota/lambda-dependent glyceraldehyde-3-phosphate
dehydrogenase phosphorylation. J Biol Chem. 2003 Dec 26;278(52):52524-30. Epub
2003 Oct 21. PubMed PMID: 14570876.
39: Bryksin AV, Laktionov PP. Role of glyceraldehyde-3-phosphate dehydrogenase in
vesicular transport from golgi apparatus to endoplasmic reticulum. Biochemistry
(Mosc). 2008 Jun;73(6):619-25. Review. PubMed PMID: 18620527.
40: Mazzola JL, Sirover MA. Subcellular localization of human
glyceraldehyde-3-phosphate dehydrogenase is independent of its glycolytic
function. Biochim Biophys Acta. 2003 Jun 20;1622(1):50-6. PubMed PMID: 12829261.
41: Kim H, Hol WG. Crystal structure of Leishmania mexicana glycosomal
glyceraldehyde-3-phosphate dehydrogenase in a new crystal form confirms the
putative physiological active site structure. J Mol Biol. 1998 Apr
24;278(1):5-11. PubMed PMID: 9571030.
42: Kim H, Feil IK, Verlinde CL, Petra PH, Hol WG. Crystal structure of glycosomal
glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications
for structure-based drug design and a new position for the inorganic phosphate
binding site. Biochemistry. 1995 Nov 21;34(46):14975-86. PubMed PMID: 7578111.
43: Aronov AM, Suresh S, Buckner FS, Van Voorhis WC, Verlinde CL, Opperdoes FR,
Hol WG, Gelb MH. Structure-based design of submicromolar, biologically active
inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Proc Natl
Acad Sci U S A. 1999 Apr 13;96(8):4273-8. PubMed PMID: 10200252; PubMed Central
PMCID: PMC16322.
44: Jia J, Arif A, Terenzi F, Willard B, Plow EF, Hazen SL, Fox PL.
Target-selective protein S-nitrosylation by sequence motif recognition. Cell.
2014 Oct 23;159(3):623-34. doi: 10.1016/j.cell.2014.09.032. Epub 2014 Oct 16.
PubMed PMID: 25417112; PubMed Central PMCID: PMC4243042.
45: Zaffagnini M, Morisse S, Bedhomme M, Marchand CH, Festa M, Rouhier N, Lemaire
SD, Trost P. Mechanisms of nitrosylation and denitrosylation of cytoplasmic
glyceraldehyde-3-phosphate dehydrogenase from Arabidopsis thaliana. J Biol Chem.
2013 Aug 2;288(31):22777-89. doi: 10.1074/jbc.M113.475467. Epub 2013 Jun 7.
PubMed PMID: 23749990; PubMed Central PMCID: PMC3829362.
46: Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A, Sampas N,
Bruhn L, Shendure J; 1000 Genomes Project, Eichler EE. Diversity of human copy
number variation and multicopy genes. Science. 2010 Oct 29;330(6004):641-6. doi:
10.1126/science.1197005. PubMed PMID: 21030649; PubMed Central PMCID: PMC3020103.
47: Phadke MS, Krynetskaia NF, Mishra AK, Krynetskiy E. Glyceraldehyde 3-phosphate
dehydrogenase depletion induces cell cycle arrest and resistance to
antimetabolites in human carcinoma cell lines. J Pharmacol Exp Ther. 2009
Oct;331(1):77-86. doi: 10.1124/jpet.109.155671. Epub 2009 Jul 23. PubMed PMID:
19628630; PubMed Central PMCID: PMC2766228.
48: Jenkins JL, Tanner JJ. High-resolution structure of human
D-glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr.
2006 Mar;62(Pt 3):290-301. Epub 2006 Feb 22. PubMed PMID: 16510976.
49: Rathmell JC, Kornbluth S. Filling a GAP(DH) in caspase-independent cell death.
Cell. 2007 Jun 1;129(5):861-3. PubMed PMID: 17540167; PubMed Central PMCID:
PMC2592604.
50: Nicholls C, Li H, Liu JP. GAPDH: a common enzyme with uncommon functions. Clin
Exp Pharmacol Physiol. 2012 Aug;39(8):674-9. doi:
10.1111/j.1440-1681.2011.05599.x. Review. PubMed PMID: 21895736.
51: Lachaal M, Berenski CJ, Kim J, Jung CY. An ATP-modulated specific association
of glyceraldehyde-3-phosphate dehydrogenase with human erythrocyte glucose
transporter. J Biol Chem. 1990 Sep 15;265(26):15449-54. PubMed PMID: 2394733.
52: Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B, Dawson
TM, Dawson VL, Snyder SH, Sawa A. Nitric oxide-induced nuclear GAPDH activates
p300/CBP and mediates apoptosis. Nat Cell Biol. 2008 Jul;10(7):866-73. doi:
10.1038/ncb1747. Epub 2008 Jun 15. PubMed PMID: 18552833; PubMed Central PMCID:
PMC2689382.
53: Tristan CA, Ramos A, Shahani N, Emiliani FE, Nakajima H, Noeh CC, Kato Y,
Takeuchi T, Noguchi T, Kadowaki H, Sedlak TW, Ishizuka K, Ichijo H, Sawa A. Role
of apoptosis signal-regulating kinase 1 (ASK1) as an activator of the GAPDH-Siah1
stress-signaling cascade. J Biol Chem. 2015 Jan 2;290(1):56-64. doi:
10.1074/jbc.M114.596205. Epub 2014 Nov 12. PubMed PMID: 25391652; PubMed Central
PMCID: PMC4281757.
54: Yego EC, Mohr S. siah-1 Protein is necessary for high glucose-induced
glyceraldehyde-3-phosphate dehydrogenase nuclear accumulation and cell death in
Muller cells. J Biol Chem. 2010 Jan 29;285(5):3181-90. doi:
10.1074/jbc.M109.083907. Epub 2009 Nov 23. PubMed PMID: 19940145; PubMed Central
PMCID: PMC2823464.
55: Phadke MS, Krynetskaia NF, Mishra AK, Krynetskiy E. Glyceraldehyde 3-phosphate
dehydrogenase depletion induces cell cycle arrest and resistance to
antimetabolites in human carcinoma cell lines. J Pharmacol Exp Ther. 2009
Oct;331(1):77-86. doi: 10.1124/jpet.109.155671. Epub 2009 Jul 23. PubMed PMID:
19628630; PubMed Central PMCID: PMC2766228.
56: Seidler NW. Functional diversity. Adv Exp Med Biol. 2013;985:103-47. doi:
10.1007/978-94-007-4716-6_4. Review. PubMed PMID: 22851448.
57: Li T, Liu M, Feng X, Wang Z, Das I, Xu Y, Zhou X, Sun Y, Guan KL, Xiong Y, Lei
QY. Glyceraldehyde-3-phosphate dehydrogenase is activated by lysine 254
acetylation in response to glucose signal. J Biol Chem. 2014 Feb
7;289(6):3775-85. doi: 10.1074/jbc.M113.531640. Epub 2013 Dec 21. PubMed PMID:
24362262; PubMed Central PMCID: PMC3916574.
58: Nakajima H, Amano W, Fujita A, Fukuhara A, Azuma YT, Hata F, Inui T, Takeuchi
T. The active site cysteine of the proapoptotic protein
glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced
aggregation and cell death. J Biol Chem. 2007 Sep 7;282(36):26562-74. Epub 2007
Jul 5. PubMed PMID: 17613523.
59: Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah
JH, Tankou SK, Hester LD, Ferris CD, Hayward SD, Snyder SH, Sawa A.
S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation
following Siah1 binding. Nat Cell Biol. 2005 Jul;7(7):665-74. Epub 2005 Jun 12.
PubMed PMID: 15951807.
60: Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B, Dawson
TM, Dawson VL, Snyder SH, Sawa A. Nitric oxide-induced nuclear GAPDH activates
p300/CBP and mediates apoptosis. Nat Cell Biol. 2008 Jul;10(7):866-73. doi:
10.1038/ncb1747. Epub 2008 Jun 15. PubMed PMID: 18552833; PubMed Central PMCID:
PMC2689382.
61: Ercolani L, Florence B, Denaro M, Alexander M. Isolation and complete sequence
of a functional human glyceraldehyde-3-phosphate dehydrogenase gene. J Biol Chem.
1988 Oct 25;263(30):15335-41. PubMed PMID: 3170585.
63: Rodacka A, Gerszon J, Puchała M. [The biological significance of oxidative
modifications of cysteine residues in proteins illustrated with the example of
glyceraldehyde-3-phosphate dehydrogenase]. Postepy Hig Med Dosw (Online). 2014
Mar 12;68:280-90. Review. Polish. PubMed PMID: 24662796.
64: Hildebrandt T, Knuesting J, Berndt C, Morgan B, Scheibe R. Cytosolic thiol
switches regulating basic cellular functions: GAPDH as an information hub? Biol
Chem. 2015 May;396(5):523-37. doi: 10.1515/hsz-2014-0295. PubMed PMID: 25581756.
65: Nakajima H, Amano W, Kubo T, Fukuhara A, Ihara H, Azuma YT, Tajima H, Inui T,
Sawa A, Takeuchi T. Glyceraldehyde-3-phosphate dehydrogenase aggregate formation
participates in oxidative stress-induced cell death. J Biol Chem. 2009 Dec
4;284(49):34331-41. doi: 10.1074/jbc.M109.027698. Epub 2009 Oct 16. PubMed PMID:
19837666; PubMed Central PMCID: PMC2797201.
66: Rinalducci S, Marrocco C, Zolla L. Thiol-based regulation of
glyceraldehyde-3-phosphate dehydrogenase in blood bank-stored red blood cells: a
strategy to counteract oxidative stress. Transfusion. 2015 Mar;55(3):499-506.
doi: 10.1111/trf.12855. Epub 2014 Sep 4. PubMed PMID: 25196942
67: Rodacka A, Gerszon J, Puchała M. [The biological significance of oxidative
modifications of cysteine residues in proteins illustrated with the example of
glyceraldehyde-3-phosphate dehydrogenase]. Postepy Hig Med Dosw (Online). 2014
Mar 12;68:280-90. Review. Polish. PubMed PMID: 24662796.
68: Samson AL, Knaupp AS, Kass I, Kleifeld O, Marijanovic EM, Hughes VA, Lupton
CJ, Buckle AM, Bottomley SP, Medcalf RL. Oxidation of an exposed methionine
instigates the aggregation of glyceraldehyde-3-phosphate dehydrogenase. J Biol
Chem. 2014 Sep 26;289(39):26922-36. doi: 10.1074/jbc.M114.570275. Epub 2014 Aug
1. PubMed PMID: 25086035; PubMed Central PMCID: PMC4175333.
69: Kornberg MD, Sen N, Hara MR, Juluri KR, Nguyen JV, Snowman AM, Law L, Hester
LD, Snyder SH. GAPDH mediates nitrosylation of nuclear proteins. Nat Cell Biol.
2010 Nov;12(11):1094-100. doi: 10.1038/ncb2114. Epub 2010 Oct 24. PubMed PMID:
20972425; PubMed Central PMCID: PMC2972384.
70: Kohr MJ, Murphy E, Steenbergen C. Glyceraldehyde-3-phosphate dehydrogenase
acts as a mitochondrial trans-S-nitrosylase in the heart. PLoS One. 2014 Oct
27;9(10):e111448. doi: 10.1371/journal.pone.0111448. eCollection 2014. PubMed
PMID: 25347796; PubMed Central PMCID: PMC4210263.
71: Padgett CM, Whorton AR. S-nitrosoglutathione reversibly inhibits GAPDH by
S-nitrosylation. Am J Physiol. 1995 Sep;269(3 Pt 1):C739-49. PubMed PMID:
7573405.
72: Hara MR, Cascio MB, Sawa A. GAPDH as a sensor of NO stress. Biochim Biophys
Acta. 2006 May;1762(5):502-9. Epub 2006 Mar 9. Review. PubMed PMID: 16574384.
73 : Nicholls C, Pinto AR, Li H, Li L, Wang L, Simpson R, Liu JP.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) induces cancer cell senescence
by interacting with telomerase RNA component. Proc Natl Acad Sci U S A. 2012 Aug
14;109(33):13308-13. doi: 10.1073/pnas.1206672109. Epub 2012 Jul 30. PubMed PMID:
22847419; PubMed Central PMCID: PMC3421169.
74: Bae BI, Hara MR, Cascio MB, Wellington CL, Hayden MR, Ross CA, Ha HC, Li XJ,
Snyder SH, Sawa A. Mutant huntingtin: nuclear translocation and cytotoxicity
mediated by GAPDH. Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3405-9. Epub 2006
Feb 21. PubMed PMID: 16492755; PubMed Central PMCID: PMC1413934.
75: Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah
JH, Tankou SK, Hester LD, Ferris CD, Hayward SD, Snyder SH, Sawa A.
S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation
following Siah1 binding. Nat Cell Biol. 2005 Jul;7(7):665-74. Epub 2005 Jun 12.
PubMed PMID: 15951807.
76: Bommareddy RR, Chen Z, Rappert S, Zeng AP. A de novo NADPH generation pathway
for improving lysine production of Corynebacterium glutamicum by rational design
of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab
Eng. 2014 Sep;25:30-7. doi: 10.1016/j.ymben.2014.06.005. Epub 2014 Jun 19. PubMed
PMID: 24953302.
77: Ventura M, Mateo F, Serratosa J, Salaet I, Carujo S, Bachs O, Pujol MJ.
Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by
acetylation. Int J Biochem Cell Biol. 2010 Oct;42(10):1672-80. doi:
10.1016/j.biocel.2010.06.014. Epub 2010 Jun 25. PubMed PMID: 20601085.
78: Lee SY, Kim JH, Jung H, Chi SW, Chung SJ, Lee CK, Park BC, Bae KH, Park SG.
Glyceraldehyde-3-phosphate, a glycolytic intermediate, prevents cells from
apoptosis by lowering S-nitrosylation of glyceraldehyde-3-phosphate
dehydrogenase. J Microbiol Biotechnol. 2012 Apr;22(4):571-3. PubMed PMID:
22534308.
79: Hara MR, Snyder SH. Nitric oxide-GAPDH-Siah: a novel cell death cascade. Cell
Mol Neurobiol. 2006 Jul-Aug;26(4-6):527-38. Epub 2006 Apr 22. Review. PubMed
PMID: 16633896.
80: Huang Q, Lan F, Zheng Z, Xie F, Han J, Dong L, Xie Y, Zheng F. Akt2 kinase
suppresses glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-mediated apoptosis in
ovarian cancer cells via phosphorylating GAPDH at threonine 237 and decreasing
its nuclear translocation. J Biol Chem. 2011 Dec 9;286(49):42211-20. doi:
10.1074/jbc.M111.296905. Epub 2011 Oct 6. PubMed PMID: 21979951; PubMed Central
PMCID: PMC3234938.
81: Ventura M, Mateo F, Serratosa J, Salaet I, Carujo S, Bachs O, Pujol MJ.
Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase is regulated by
acetylation. Int J Biochem Cell Biol. 2010 Oct;42(10):1672-80. doi:
10.1016/j.biocel.2010.06.014. Epub 2010 Jun 25. PubMed PMID: 20601085.
82: Tristan CA, Ramos A, Shahani N, Emiliani FE, Nakajima H, Noeh CC, Kato Y,
Takeuchi T, Noguchi T, Kadowaki H, Sedlak TW, Ishizuka K, Ichijo H, Sawa A. Role
of apoptosis signal-regulating kinase 1 (ASK1) as an activator of the GAPDH-Siah1
stress-signaling cascade. J Biol Chem. 2015 Jan 2;290(1):56-64. doi:
10.1074/jbc.M114.596205. Epub 2014 Nov 12. PubMed PMID: 25391652; PubMed Central
PMCID: PMC4281757.
83: Sen N, Hara MR, Ahmad AS, Cascio MB, Kamiya A, Ehmsen JT, Agrawal N, Hester L,
Doré S, Snyder SH, Sawa A. GOSPEL: a neuroprotective protein that binds to GAPDH
upon S-nitrosylation. Neuron. 2009 Jul 16;63(1):81-91. doi:
10.1016/j.neuron.2009.05.024. Erratum in: Neuron. 2009 Sep 10;63(5):709.
Aggrawal, Nishant [corrected to Agrawal, Nishant]. PubMed PMID: 19607794; PubMed
Central PMCID: PMC2758064.
84: Sen N, Hara MR, Kornberg MD, Cascio MB, Bae BI, Shahani N, Thomas B, Dawson
TM, Dawson VL, Snyder SH, Sawa A. Nitric oxide-induced nuclear GAPDH activates
p300/CBP and mediates apoptosis. Nat Cell Biol. 2008 Jul;10(7):866-73. doi:
10.1038/ncb1747. Epub 2008 Jun 15. PubMed PMID: 18552833; PubMed Central PMCID:
PMC2689382.
85: Harraz MM, Snyder SH. Nitric Oxide-GAPDH Transcriptional Signaling Mediates
Behavioral Actions of Cocaine. CNS Neurol Disord Drug Targets. 2015;14(6):757-63.
PubMed PMID: 26022259.
86: Sedlak TW, Snyder SH. Messenger molecules and cell death: therapeutic
implications. JAMA. 2006 Jan 4;295(1):81-9. PubMed PMID: 16391220.
87: Jenkins JL, Tanner JJ. High-resolution structure of human
D-glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr D Biol Crystallogr.
2006 Mar;62(Pt 3):290-301. Epub 2006 Feb 22. PubMed PMID: 16510976.
88: Arutyunova EI, Danshina PV, Domnina LV, Pleten AP, Muronetz VI. Oxidation of
glyceraldehyde-3-phosphate dehydrogenase enhances its binding to nucleic acids.
Biochem Biophys Res Commun. 2003 Aug 1;307(3):547-52. PubMed PMID: 12893257.
89: Broniowska KA, Hogg N. Differential mechanisms of inhibition of
glyceraldehyde-3-phosphate dehydrogenase by S-nitrosothiols and NO in cellular
and cell-free conditions. Am J Physiol Heart Circ Physiol. 2010
Oct;299(4):H1212-9. doi: 10.1152/ajpheart.00472.2010. Epub 2010 Jul 30. PubMed
PMID: 20675567; PubMed Central PMCID: PMC2957357.
90: Tarze A, Deniaud A, Le Bras M, Maillier E, Molle D, Larochette N, Zamzami N,
Jan G, Kroemer G, Brenner C. GAPDH, a novel regulator of the pro-apoptotic
mitochondrial membrane permeabilization. Oncogene. 2007 Apr 19;26(18):2606-20.
Epub 2006 Oct 30. PubMed PMID: 17072346.
91: Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I,
Mansfeld J, Buchholz F, Hyman AA, Mann M. A Human Interactome in Three
Quantitative Dimensions Organized by Stoichiometries and Abundances. Cell. 2015
Oct 22;163(3):712-23. doi: 10.1016/j.cell.2015.09.053. Epub 2015 Oct 22. PubMed
PMID: 26496610.
92: Jia J, Arif A, Willard B, Smith JD, Stuehr DJ, Hazen SL, Fox PL. Protection of
extraribosomal RPL13a by GAPDH and dysregulation by S-nitrosylation. Mol Cell.
2012 Aug 24;47(4):656-63. doi: 10.1016/j.molcel.2012.06.006. Epub 2012 Jul 5.
PubMed PMID: 22771119; PubMed Central PMCID: PMC3635105.
93: Arif A, Chatterjee P, Moodt RA, Fox PL. Heterotrimeric GAIT complex drives
transcript-selective translation inhibition in murine macrophages. Mol Cell Biol.
2012 Dec;32(24):5046-55. doi: 10.1128/MCB.01168-12. Epub 2012 Oct 15. PubMed
PMID: 23071094; PubMed Central PMCID: PMC3510535.
94: Carmona P, Rodríguez-Casado A, Molina M. Conformational structure and binding
mode of glyceraldehyde-3-phosphate dehydrogenase to tRNA studied by Raman and CD
spectroscopy. Biochim Biophys Acta. 1999 Jul 13;1432(2):222-33. PubMed PMID:
10407144.
95: Arif A, Chatterjee P, Moodt RA, Fox PL. Heterotrimeric GAIT complex drives
transcript-selective translation inhibition in murine macrophages. Mol Cell Biol.
2012 Dec;32(24):5046-55. doi: 10.1128/MCB.01168-12. Epub 2012 Oct 15. PubMed
PMID: 23071094; PubMed Central PMCID: PMC3510535.
96: Berry MD, Boulton AA. Glyceraldehyde-3-phosphate dehydrogenase and apoptosis.
J Neurosci Res. 2000 Apr 15;60(2):150-4. Review. PubMed PMID: 10740219.
97: Mansur NR, Meyer-Siegler K, Wurzer JC, Sirover MA. Cell cycle regulation of
the glyceraldehyde-3-phosphate dehydrogenase/uracil DNA glycosylase gene in
normal human cells. Nucleic Acids Res. 1993 Feb 25;21(4):993-8. PubMed PMID:
8451199; PubMed Central PMCID: PMC309234.
98: Brüne B, Lapetina EG. Protein thiol modification of glyceraldehyde-3-phosphate
dehydrogenase as a target for nitric oxide signaling. Genet Eng (N Y).
1995;17:149-64. Review. PubMed PMID: 7540026.
99: Saunders PA, Chen RW, Chuang DM. Nuclear translocation of
glyceraldehyde-3-phosphate dehydrogenase isoforms during neuronal apoptosis. J
Neurochem. 1999 Mar;72(3):925-32. PubMed PMID: 10037463.
01: Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK, Sirover MA. A human
nuclear uracil DNA glycosylase is the 37-kDa subunit of
glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1991 Oct
1;88(19):8460-4. PubMed PMID: 1924305; PubMed Central PMCID: PMC52528.
02: Caradonna S, Muller-Weeks S. The nature of enzymes involved in uracil-DNA
repair: isoform characteristics of proteins responsible for nuclear and
mitochondrial genomic integrity. Curr Protein Pept Sci. 2001 Dec;2(4):335-47.
Review. PubMed PMID: 12369930.
03: Köhler T, Rost AK, Remke H. Calibration and storage of DNA competitors used
for contamination-protected competitive PCR. Biotechniques. 1997 Oct;23(4):722-6.
PubMed PMID: 9343699.
04: Muller-Weeks S, Mastran B, Caradonna S. The nuclear isoform of the highly
conserved human uracil-DNA glycosylase is an Mr 36,000 phosphoprotein. J Biol
Chem. 1998 Aug 21;273(34):21909-17. PubMed PMID: 9705330.
05: Backlund M, Paukku K, Daviet L, De Boer RA, Valo E, Hautaniemi S, Kalkkinen N,
Ehsan A, Kontula KK, Lehtonen JY. Posttranscriptional regulation of angiotensin
II type 1 receptor expression by glyceraldehyde 3-phosphate dehydrogenase.
Nucleic Acids Res. 2009 Apr;37(7):2346-58. doi: 10.1093/nar/gkp098. Epub 2009 Feb
26. PubMed PMID: 19246543; PubMed Central PMCID: PMC2673440.
06: Allen RW, Trach KA, Hoch JA. Identification of the 37-kDa protein displaying a
variable interaction with the erythroid cell membrane as
glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem. 1987 Jan 15;262(2):649-53.
PubMed PMID: 3027061.
07: Cummings M, Sarveswaran J, Homer-Vanniasinkam S, Burke D, Orsi NM.
Glyceraldehyde-3-phosphate dehydrogenase is an inappropriate housekeeping gene
for normalising gene expression in sepsis. Inflammation. 2014 Oct;37(5):1889-94.
doi: 10.1007/s10753-014-9920-3. PubMed PMID: 24858725.
08: Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P. Plant cytoplasmic
GAPDH: redox post-translational modifications and moonlighting properties. Front
Plant Sci. 2013 Nov 12;4:450. doi: 10.3389/fpls.2013.00450. eCollection 2013.
Review. PubMed PMID: 24282406; PubMed Central PMCID: PMC3824636.
09: Hildebrandt T, Knuesting J, Berndt C, Morgan B, Scheibe R. Cytosolic thiol
switches regulating basic cellular functions: GAPDH as an information hub? Biol
Chem. 2015 May;396(5):523-37. doi: 10.1515/hsz-2014-0295. PubMed PMID: 25581756.
00: Tatton WG, Chalmers-Redman RM, Elstner M, Leesch W, Jagodzinski FB, Stupak DP,
Sugrue MM, Tatton NA. Glyceraldehyde-3-phosphate dehydrogenase in
neurodegeneration and apoptosis signaling. J Neural Transm Suppl.
2000;(60):77-100. Review. PubMed PMID: 11205159.
001: Ishitani R, Tajima H, Takata H, Tsuchiya K, Kuwae T, Yamada M, Takahashi H,
Tatton NA, Katsube N. Proapoptotic protein glyceraldehyde-3-phosphate
dehydrogenase: a possible site of action of antiapoptotic drugs. Prog
Neuropsychopharmacol Biol Psychiatry. 2003 Apr;27(2):291-301. Review. PubMed
PMID: 12657368.
002: Barber RD, Harmer DW, Coleman RA, Clark BJ. GAPDH as a housekeeping gene:
analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol
Genomics. 2005 May 11;21(3):389-95. Epub 2005 Mar 15. PubMed PMID: 15769908.
003: Ishitani R, Sunaga K, Hirano A, Saunders P, Katsube N, Chuang DM. Evidence
that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced
apoptosis in mature cerebellar neurons in culture. J Neurochem. 1996
Mar;66(3):928-35. PubMed PMID: 8769851.
004: Kvassman J, Pettersson G, Ryde-Pettersson U. Mechanism of
glyceraldehyde-3-phosphate transfer from aldolase to glyceraldehyde-3-phosphate
dehydrogenase. Eur J Biochem. 1988 Mar 1;172(2):427-31. PubMed PMID: 3350006.
005: Tomokuni Y, Goryo K, Katsura A, Torii S, Yasumoto K, Kemnitz K, Takada M,
Fukumura H, Sogawa K. Loose interaction between glyceraldehyde-3-phosphate
dehydrogenase and phosphoglycerate kinase revealed by fluorescence resonance
energy transfer-fluorescence lifetime imaging microscopy in living cells. FEBS J.
2010 Mar;277(5):1310-8. doi: 10.1111/j.1742-4658.2010.07561.x. PubMed PMID:
20392205.
006: Li C, Feng JJ, Wu YP, Zhang GY. Cerebral ischemia-reperfusion induces GAPDH
S-nitrosylation and nuclear translocation. Biochemistry (Mosc). 2012
Jun;77(6):671-8. doi: 10.1134/S0006297912060156. PubMed PMID: 22817468.
007: Hara MR, Thomas B, Cascio MB, Bae BI, Hester LD, Dawson VL, Dawson TM, Sawa A,
Snyder SH. Neuroprotection by pharmacologic blockade of the GAPDH death cascade.
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3887-9. Epub 2006 Feb 27. PubMed
PMID: 16505364; PubMed Central PMCID: PMC1450161.
008: Lee SB, Kim CK, Lee KH, Ahn JY. S-nitrosylation of B23/nucleophosmin by GAPDH
protects cells from the SIAH1-GAPDH death cascade. J Cell Biol. 2012 Oct
1;199(1):65-76. doi: 10.1083/jcb.201205015. PubMed PMID: 23027902; PubMed Central
PMCID: PMC3461512.
009: Carmona P, Rodríguez-Casado A, Molina M. Conformational structure and binding
mode of glyceraldehyde-3-phosphate dehydrogenase to tRNA studied by Raman and CD
spectroscopy. Biochim Biophys Acta. 1999 Jul 13;1432(2):222-33. PubMed PMID:
10407144.
010: Habenicht A. The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase:
biochemistry, structure, occurrence and evolution. Biol Chem. 1997
Dec;378(12):1413-9. Review. PubMed PMID: 9461340.

No comments: